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A b s t r a c t  2. T h e o r y  

In the case of grazing incidence, the integrated 
reflectivity calculated according to the theory appro- 
priate for extreme asymmetry is smaller than that 
calculated according to the conventional theory. In the 
case of grazing emergence the results calculated 
according to each theory exhibit smaller differences 
than for the first case within a great range of extreme 
asymmetry. In the conventional theory the integrated 
reflectivity tends to zero for a - 0 B tending to zero, 
whereas the theory for extremely asymmetric cases 
provides a non-zero value for the reflectivity for a -  0n 
tending to zero. 

1. I n t r o d u c t i o n  

The problem of the asymptotic behaviour of the 
integrated reflectivity of perfect and imperfect crystals 
has been discussed in some recent works. Mathieson 
(1976, 1977) has proposed that the very asymmetric 
Bragg case offers an experimental means of deriving 
extinction-free structure factors by extrapolation of 
integrated reflectivity data to the asymptotic limits. 
Wilkins (1978, 1980) systematically explored the 
variation of X-ray Bragg reflection properties of perfect 
and imperfect crystals with thickness and degree of 
asymmetry of reflection by direct numerical evaluation 
of the dynamical theory. In particular he showed that 
well-defined universal limits exist where the integrated 
reflectivity of an ideally imperfect crystal 
asymptotically approaches that of a perfect crystal of 
the same material under the same diffraction con- 
ditions. These calculations were based on the conven- 
tional dynamical theory. This means that they do not 
necessarily apply in the extremely asymmetric ranges 
where the conventional theory provides results which 
are either only partly correct or completely incorrect. 
The aim of the present work is to show the behaviour of 
the integrated reflectivity of a perfect crystal in the two 
extreme asymmetric limits which are characterized by 
grazing incidence and grazing emergence. 
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The integrated reflectivity of a perfect crystal on the 
glancing-angle scale is defined by 

pO = f Rn(AO) d(A0). (1) 

Here, 

Rh(AO) = e o"' 

is the reflectivity on the glancing-angle scale, 

h = sin (0 B + AO + a) 
(2) 

Yh = sin (0B + A O - a ) ,  

0 = 0 B + AO is the glancing angle, Xh, ,Zh are the Fourier 
coefficients of the electric susceptibility, 0 B is the Bragg 
angle, a is the angle between reflecting lattice planes 
and crystal surface, AO is the departure of the incident 
beam from the exact Bragg law, Et0 aJ is the amplitude of 
the incident wave and El, a) is the amplitude of the 
diffracted wave outside the crystal. 

A more accurate form of the dynamical theory 
appropriate also in extremely asymmetric cases was 
first developed by Farwig & Schiirmann (1967). 
Equivalent formulations and first calculations have 
been published by Kishino & Kohra (1971) and 
Bedyfiska (1973). 

The present calculations of the reflectivity Rh(AO ) 
were carried out numerically according to the formu- 
lation of Bedyfiska (1973), taking into account the 
results of Hiirtwig (1978a), using without further 
approximations the fundamental equation for the 
two-beam case in the form 

K 2 t -  k 2 ) 
k2 Xo Eoi  - -  Xli Eh t  =- 0 

; (3) 

- Xn E0~ + k2 X0 Ehi = 0 
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the related equation of the dispersion surface; the 
boundary condition for the wave vectors; the four 
solutions g~ of the equation 

g4  + bg3  + cg2  + d g  + e = 0 ;  (4) 

and the two boundary conditions for the amplitudes at 
the crystal surface. Here, K0~, Khi are the wave vectors 
of the wave fields inside the crystal, k is the wave vector 
of the incident wave, g~ is the A n p a s s u n g s f e h l e r  defined 
by Koi = k - rig i k,  b, c, d, e are functions of a,  0 n, AO, 
2'0, 2'h and Xh, n is the unit vector normal to the entrance 
surface, i = 1, 2, 3, 4 is the index of the wave fields. 

The integration of (1) was also carried out 
numerically. 

3. Results 

The integrated reflectivity as a function of asymmetry 
was calculated for a special case: The 220 reflection of 
silicon, Cu Ka~ radiation, d = 1 mm (thick crystal) and 
a polarization. From these results the general beha- 
viour of the integrated reflectivity in the two extreme 
asymmetric limits can be seen. For comparison, 
calculations were carried out also according to the 
conventional theory [with the anomalous dispersion 
parameter x = 0-034__L7 the parameter g = - 0 . 0 1 8 0  
× (~'0 + I~'hl)/k/~0/l~'hl, the mean path length A ~_ 
1 5 / ~  and d O / d y  = 1.323 x 10-sV/lYhl/70 
(Afanas'ev & Perstnev, 1969; Hirsch & Ramachan- 
dran, 1950; Pinsker 1974)1. 

3.1.  G r a z i n g  i n c i d e n c e  

Fig. 1 shows the integrated reflectivities pO calcu- 
lated according to the conventional theory and to the 
theory appropriate for extreme asymmetry, as a 
function of a + 0~ for the case of grazing incidence. For 
angles a + 0 n < 0.02 rad (~ 1°), the curve according 
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Fig. 1. Integrated reflectivity calculated according to the theory 

appropriate for extreme asymmetry (solid line) and according to 
the conventional theory (dashed line) in the case of grazing 
incidence. Amplitude of the incident plane waves E~ a~ = 1. 

to the theory for extreme asymmetry departs 
increasingly from that according to the conventional 
theory. After reaching its maximum at about a + O n 
6 x 10 -3 rad(,-,0-34°),  it decreases with increasing 
asymmetry. 

These considerable departures result mainly from 
three origins: 

1. A strong specularly reflected wave E m appears, 
which in comparison with the conventional theory 
leads to smaller amplitudes E h (Kishino & Kohra, 
1971; Brfimmer, H6che & Nieber, 1976; Hfirtwig, 
1978c). 

2. The form of the dispersion surface changes 
distinctly, which considerably influences the departure 
from the Bragg law owing to refraction and the incident 
half-width of the reflection pattern (Rustichelli, 1975; 
Mazkedian & Rustichelli, 1975; Brfimmer et al . ,  1976). 

3. The definition of the incident-beam direction 
cosine changes from 7o = sin(0n + a), which is an 
approximation holding as long as IO s + a I~IA01 
(conventional theory), to that given in (2). 

3.2. G r a z i n g  e m e r g e n c e  

Fig. 2 shows the integrated reflectivities /9o calcu- 
lated according to the conventional theory and to the 
theory appropriate for extreme asymmetry, as a 
function of a + 0 n for the case of grazing emergence. 
Within nearly the whole Bragg range the differences 
between the two curves are much smaller than in 
the case of grazing incidence. In the range of about 
--5 x 10 -3 < a --  0 n < --2 × 10 -4 rad (~ -0 .7 ' ) ,  the 
integrated reflectivity calculated according to the 
theory appropriate for extreme asymmetry is smaller 
than that calculated according to the conventional 
theory and for greater values of a - 0 n it exceeds the 
latter. This behaviour results mainly from two sources: 
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Fig. 2. Integrated reflectivity calculated according to the theory 

appropriate for extreme asymmetry (solid line) and according to 
the conventional theory (dashed line) in the case of grazing 
emergence. Amplitude of the incident plane waves ECo a) = 1. 
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1. At the exit surface a second strong diffracted 
wave appears, the wave End. This leads, in com- 
parison with the conventional theory, to smaller 
amplitudes E h (Hiirtwig, 1978b). But, on the other hand, 
the diffracted wave E h has a considerable amplitude 
still in the range of an extremely asymmetric Laue case 
with grazing emergence (Kishino, Noda & Kohra, 
1972; Bedyfiska, 1973, 1974), where the conventional 
theory predicts no En. Therefore, in the conventional 
theory the integrated reflectivity tends to zero for a -  
0B tending to zero, whereas the theory for the extremely 
asymmetric case provides a non-zero value for a - 0 n 
tending to zero. 

2. The definition of the emerging-beam direction 
cosine changes from Yh = sin (0 n - a ) ,  which is also an 
approximation holding as long as l0 n -a l>>lAOI,  to 
that given in (2). But in the case of grazing emergence 
this change leads to an increase of the integrated 
reflectivity compared with the result of the conventional 
theory. So two opposite tendencies act now on the 
integrated reflectivity. 

The consequences of the changes of the form of the 
dispersion surface are not so important now, because in 
the case of grazing emergence the departures from the 
exact Bragg law for the physically interesting region 
(i.e. for the maximum of the reflection curve) are much 
smaller than in the case of grazing incidence (now AO ~_ 
10 -5 rad and not ~ 10 -3 rad), but they too cannot be 
neglected (H/irtwig, 1978b). 

Despite the fact that the calculations were carried 
out for a special case, the obtained results may be 

generalized, because the discussed properties are 
independent of the chosen conditions. 
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Abstract 

Diffuse X-ray intensities have been measured in the 
hk0 reciprocal plane of cubic dicalcium barium 
propionate, Ca2Ba(C2HsCOO)6, with a diffractometer. 
The observed streaks run parallel to [[10], passing 
through reciprocal-lattice points with h + k = 8n. 
Intensity profiles in two directions perpendicular to the 
streaks were measured and fitted theoretically under the 
assumption of one-dimensional Markov-chain-type 
correlations; the agreement between theory and experi- 
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mental data is excellent, particularly for the [110] 
direction, giving correlation lengths of 24.5 (5)/~ along 
[110] and 4 .6(1) / i ,  along [001]. These lengths are 
compared with the crystal structure and suggest a 
model in which there are ordered domains elongated 
along [110] but rather short along [001]. 

Introduction 

Recently, Stadnicka & Glazer (1980), hereafter SG, 
reported an accurate structure determination of di- 
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